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REFUTING EHRENFEUCHT CONJECTURE 
ON RIGID MODELS* 

BY 

SAHARON SHELAH 

ABSTRACT 

We prove that the class of cardinalities in which a first-order sentence has a 
rigid mode] can be very complicated, and we essentially characterize the 
possible classes, 

Introduction 

A rigid rigid mode l  is a mode l  with no  a u t o m o r p h i s m  except  the identity.  

Ehrenfeuch t ,  in [2], builds some  coun tab le  (f irst-order)  theor ies  T, to exem-  

plify the possible  RS(T)={3`: T has a rigid mode l  of cardinal i ty  3`}. H e  

con jec tured  that  his examples  exhaust ,  essentially,  all posibilities; thus he  

con jec tured  that  RS(T) is always convex,  its lower  b o u n d  is No or  N1, and its 

uppe r  bound  is 00 or  smal ler  than  :1,~ 1. T h e  posi t ive solut ion of L o s  conjec ture  by 

Mor ley  [6] raised hopes,  but  no advance  was made ,  except  some  works  on some  

specific theor ies  (order ,  Boo lean  algebras,  see e.g. [5,8,11]).  Eh ren feuch t  

con jec ture  is based  on the thesis that  " t he  only examples  that  exist are the  ones  

that  we can cons t ruc t . "  H e r e  we start  f rom the dual  thesis: " eve ry  class of 

cardinals can be  r ep resen ted  as RS (T), except  when  this is imposs ible  on trivial 

g rounds . "  M o r e  specifically, for  every  (first-order) sen tence  @, trivially RS(~b) is 

a E:-class of pure  second-o rde r  logic (i.e., there  is a sen tence  

X = OR,,"" ", R,) (VS,,..., S.) O, 

0 first order ,  R~, S~ var iables  ove r  relat ions,  and the class is {3`IA ~ X})- We  

p rove  an a lmost  converse  to this, i.e., restricting ourselves  to 3  ̀ = N o +  

E ,  . . . .  ~ K "o. W e  can s t rengthen  our  result  by weaken ing  the condi t ion on 3`, but  

the effort  seems too much  for  the gain. 

An open  p r o b l e m  is to r e m o v e  the  restr ict ion on 3,; but  it is much  m o r e  

t Dedicated to the memory of A. Robinson. 
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interesting to try to prove positive results for restricted classes, e.g. equational 

classes, or the class of I T  I+-saturated models. For sufficient conditions for the 

existence of rigid models, see Rubin and Shelah [7] and Shelah [10]. Ehrgnfeucht 

conjecture appears in the problem lists of Chang and Keisler [1], and Friedman 

[3] and our solution was announced in [9]. 

NOTATIONS. A, K, /z denote infinite cardinals, S~ (A)  denotes the set of finite 

subsets of A. ~a, ~ a ,  ~ a  denote the set of functions from to to a, {f] D o m ( f )  E 

to, R n g ( f ) C  a} and ~a triO>a, respectively; we shall use these notations also 

within models of a certain weak set theory. 

If M is a model and R is a predicate in the language of M, then R M denotes 

the interpretation of R in M;  if R is unary, R M also denotes the submodel of M 

whose universe is R u. If ~0 (x~, �9 �9 x,)  is a formula in the language of M then 

q ~  = {(at,  . . ., a~)l M l= ~ [ a l ,  . . ., a~]}. 

If M is a model and s~, . . . , s t  are relations or functions on [MI,  then 

(M, s t , "  ", st) denotes the model derived from M by adding names s t , "  ", st to 

the language of M for the relations and functions st, �9 �9 ", s~. M ~ N denotes that 

f is an isomorphism from M onto N. Aut (N) is the set of the automorphisms 

of N. 

We shall use the conventions from set theory for denoting classes. Thus 

suppose r (x) is a formula with one free variable x. In the language, we denote 

{x I q(x)}, say, by G;  thus the formula r  is denoted by "x  ~ G " ,  and in every 

model M, G ~ denotes {a [ M ~ p [ a ] } .  

THEOREM 1. For every  E2 sen tence  X there exis ts  a f irst  order sen tence  ~b such  

that  RS(~b)  = {A J A = 1% or Y-K<,K "~ = A; a n d  A I=X}. 

Thus assuming G.C.H. for every E~ sentence X there exists a first-order 

sentence ~ such that R S ( O ) =  {AJA ~g} .  

Explanation of the proof 

We try here to explain the proof. In the proof we define specific sentences and 

prove which are their models. Here  we only describe the models. Note that in 

the proof, in each successive claim, we enlarge the model by adding new 

elements and relations. In order to simplify the explanation, we concentrate on 

the case ~ = ~,o, so we can get rid of the predicate Rt and the parameter  n, 

whose role is explained at the end. 
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The central part of the model N is P0 N, which is a model of a small part of set 

theory. We want to assure that for rigid models, this part is: 

i) with standard co, hence standard finite sets, 

ii) well-founded and even countably closed (i.e., all countable sets of 

elements of it are represented in it), 

iii) the cardinality of N satisfies the E2-sentence from Theorem 1. 

We start with a model M = M1 which will be P~'. In Claim 2 we enlarge the 

model so as to assure co is standard. We look at toM with the successsor function, 

and add two copies of it, and the projection to the old toM. This adds the 

automorphism of interchanging the two copies. Moreover,  co M and its copies are 

partitions naturally to components  (two elements are in the same, if their 

"distance" is finite). Now for any set C of components,  the function f which is 

the identity on M, and on the components  not in C, and for each component  in 

C, interchange its copies, is an automorphism of the enlarged model M2. So it is 

enough to "kill" the automorphism interchanging the copies of the first 

component  (and only them) as then, for rigid M, M2 is rigid iff to M is standard. 

The "murde r"  is done by making the two copies of zero individual constants. 

So from now on, in our set theory "finiteness" is standard. 

In Claim 4 we eventually want to force our set theory to be countably closed. 

We first describe a similar construction assuring well-foundedness. This con- 

struction was used in a first version of the proof, but not here, and is already 

sufficient to disprove Ehrenfeucht  conjecture on rigid models and a conjecture 

of Malitz in [4, p. 381] (the conjecture was that if a countable theory T has a rigid 

model of cardinality /x > No, then it has 2 ~ non-isomorphic rigid models of 

cardinality /x ). 

Let G k be the abelian group of order  two generated freely by the decreasing 

sequences of ordinals (of M)  of length k. More formally, the set of elements G k 
is the family of finite sets consisting of decreasing sequences of ordinals of length 

k, and addition is interpreted as the symmetric difference. Notice that substruc- 

tion for such groups is addition. We add to M2 copies G *k = {cx : x E G k } of G k 

for each k, and almost give the natural isomorphism, so that the only information 

missing on G *k is what is its zero. More exactly, instead of the natural 

isomorphism or addition, we add to M2 the relation 

Q={(c,,,cy, z): for some k x,y, z E G k ,  x = y + z } .  

Every automorphism h of the new model over the old is determined by a 

sequence (x(k ): k E co M~) where x(k )E G *k and 
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= J'a a E M2 
h(a)  

t Cx+x~k) a = cx, x (~ G k 

Now we expand the model further by adding a function symbol for the 

projection Pr*, whose restriction to each G*k+~ is a homomorphism from G'k§ 

into G *~ defined by Pr* (r/) = 77 [ k, for ~7 a decreasing sequence of ordinals of 

M of length k + 1. Let M* be the resulting model. It is easy to check that if 

(x (k )  : k ~ toM1) determines an automorphism of M* over Ms then Pr*(xk+l) = 

Xk. Let  us show that when tom is standard, such a sequence of xk's exists (except 

the sequence of zeros) iff there is an infinite decreasing sequence of ordinals 

of M. 

If ak is an infinite decreasing sequence of ordinals in M, xk = (a0, �9 �9 ", a~-l) will 

define a non-trivial automorphism of M. For the other direction remember  xk is 

a finite set of decreasing sequences of ordinals of M. If the automorphism is 

non-trivial for some k, x k # O ,  and for each r / E  xk there is 7 / ~  xk+~ such that 

Pr*(Th) = 77. So if Xk~o~ # O we can choose r/k~o~ ~ Xk~o~, and if 17k ~ xk is defined, 

we can find r/k+tEXk.~, r/k.~rk = ~/k. So ~/kto~+~(n) is an infinite decreasing 

sequence of ordinals in M. The construction we have described so far suffices to 

prove, e.g., that there is a sentence $ such that 0 has a rigid model of cardinality 

tz iff/x is less than the first strongly inaccessible cardinal. 

We now describe the construction that assures countable closedness. Let  M2 

be the model which " took care" that to will be standard. Let G k be the abelian 

group of order  2 freely generated by sequences of length k from P~,.  We first 

expand Ms by adjoining to it for every k E to (in Ms) G*k%f{cx Ix ~ G k } which is 

obviously a copy of G k. Obviously we add the relation {(k, cx) I x E G k } which is 

denoted by G*. As in the previous case we add to Ms the relation 

O={(cx,  c , z ) [  fo r some k x,y, z E G  k and x = y + z }  

and the function Pr* which acts on each G *k+l as the projection to G *k. The 

resulting model, call it, say, M~, has the following automorphisms: for every 

outer sequence ,/ (that is a sequence that does not necessarily belong to I M 1) of 

length to M there is a unique automorphism h~ of M~ which is the identity on P ~  

and such that h~ (cx) = c ~+~t~ for every x E G k. (M~ has more automorphism, but 

it will be sufficient to "kill" those mentioned.) We shall expand M~ to a new 

model M3 so that h. can be extended to an automorphism of M3 iff 7? does not 

belong to [MI[. For every r / ~ [ M ~ I  which is an to-sequence in M,  ~ we adjoint to 

M~ the set {c~,,, I o, E M('>{O, 1}) M} where ">{0, 1} is the set of {0, 1}-sequences of 
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length o) which are eventually zero. Before defining the new relations let us first 

define G~'", G *k'' for i ~{0,1}. G~'" is the subgroup of G ~ generated by all 

sequences of length k except ~7 Ik;  G~ '*= 7/+ Go k and G **'* = {c, Ix E G~"}. 

Notice that Go k'" is a subgroup of G k of index 2 and G~ '* is the other  coset of 

Go ~'. We can now define the additional relation R4" 

k , ' 0  M . R, = {(~7, c~,~, k, c,)l k ~ oJ", r / E  (~Po) M~', or ~ C>{0, 1}) M and x ~ (G,tk)) }, 

G*k'" namely ,k., that is, c,.~ defines in each G *~ one of the cosets o , G.~k). If 

~7 E I M I then h, cannot be extended to an automorphism of M3, since h, must 

take each c,.~ to c, .... Crl(k) = 1 - o'(k), ~r~ is not eventually zero so there is no 

element c,.,,, in M3. The reader can check that if h is a nontrivial automorphism 

of M3 which is the identity on I M~ I and ~0 M~ is standard, then there is a sequence 

of elements of py3 of length ~0 which is not in I M31 so M3 is not countably closed. 

In Claim 5 we try to assure that our model will satisfy the sentence from the 

theorem. We concentrate on a similar proof, from the first version, which does 

not appear here, and is suitable only for cardinals/~ = / z  <~ (so assuming G.C.H., 

for regular cardinal > No, we get the result). Under  this assumption, similarly to 

Claim 4, we can assure M is isomorphic to the model (H(/z),  E ) ( H ( / z ) - -  the 

family of sets of hereditary cardinality < / z ) ,  so w.l.o.g. M is isomorphic to 

(H(~) ,  ~ ). 

Let the sentence (3t~)(VS)0,(i~,  S) (0 , - - f i r s t  order) and suppose Iz satisfies 

it: then there is a sequence R of relations over /z  such that (tz, 1~) fail to satisfy 

(3S)  0 (R, S) ( 0 - - t h e  negation of 0,). In the model M we define a tree T of 

height /z :  the elements of the a - th  level will be elementary chains (M*: i < a) ,  

M* (/3,, 1~ r/3,, - * = = S,), M ,  satisfies 0,/3, > i. The order  in the tree is continuation. It 

is clear that T has a branch of length/z iff (/z,/~) satisfies (zig) O (/~, S) (that is, lq 

is not exemplifying the sentence). 

We have to enlarge M3 to M4 such that M, has an automorphism over M3 iff 

there is a branch of length /z in the tree T. This is not difficult: Let  G~ be the 

free group of order two generated by the elements of TL We add to M3 the sets 

of elements G *~={cx :x  ~ G~ a relation similar to Q of Claim 4 and 

the partial three place function Pr'f such that for a </3 </z ,  Pr~(a,/3, x) is the 

natural projection from G *~ into G~ *~. Each automorphism h of M4 over M3 

corresponds to a sequence (x~ : a < /z )x~ E G~, Prl(a,/3, x~) = x, (Prl(at,/3, x) is 

the natural projection from G~ into G~'). 

Note that if {t~ : a  </x},(t~ E T~) is a branch, taking t~ for x~ gives us a 

non-trivial automorphism. On the other hand, suppose h, x. are given, h 



278 s. SHELAH Israel J. Math. 

non-trivial. Note x~ is a finite subset of T~, and by the condition above 

I x~l=<lx~l for a < / 3 .  Hence for some no<to, ao</X, for every /3=>ao 

I x~ I = no. By the non-triviality of h, no ~ 0. It follows that when ao < a </3, 

Prl(a,/3, x) induces a one-to-one function from x0 onto xa. Remembering that 

for a </3  < y, x E G~', Prl(ot, % x) = Pq(a,/3, Pr~(/3, % x)), we can find t~ E x~ for 

ot=>ao such that Prl(a,/3, t0)=to  for a o < a < / 3 < p . .  Clearly {t: for some 

a > ao, t < t~} is a branch. This completes the proof of the revised Claim 5. 

We still have to explain the proof of the actual Claim 5. Notice that the tree T 

was a set of approximations S such that (/z,/~, S) satisfies 0. In the proof of Claim 

5 itself we shall use only countable approximations (which by Claim 4 are 

standard). For natural reasons we do not elaborate. 

We still have a small d e b t - - t h e  cases p. </~-o. We ignore the case )t = No, so 

/z = Y,<,o/~., /z, </z ,  p.7o= ~,. In this case it is impossible to demand M is 

countably closed. Hence we represent/~ as an increasing union of length to of 

transitive submodels, which are countably closed. Rl(n, x) will say that x is in the 

n-th model. This will complicate somewhat all the proof. 

REMARK. For brevity we deal only with A > No, however, the case A = No is 

easier. 

PROOF. The proof is divided into subclaims. 

Let L1--{ E ,  = ,  R1}, where ~ ,  R~ are 2-place predicates. 

Let ~b~ be the sentence which says: 

1) ~ is extensional. 

2) E is "well founded",  that is 

Vx(: ly(y  E x)---~ ::ly(y E x ^ Vz) "n (z E y ^ z E x)). 

3) ~ satisfies the pair axiom, that is, for every x and y there exists {x, y}. 

4) E satisfies the union set axiom, and the (set theoretic) difference between 

any two sets exists. 

5) E satisfies the intersection set axiom, that is for every a there exists f3 a. 

6) For every a, b a x b exists. 

7) If f is a function and a is a set then {/(b):  b E a} exists. 

8) If f is a function and a is a set then f r a exists, a is an ordinal if C linearly 

orders a, and a is transitive. 

9) There exists a first limit ordinal; we denote it by to. 

10) VxVy(R~(x, y)---~ x E to). Let R~ = {y ]R~(x, y)}. 
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11) g x V y ( x  ~ y E ~o---> R~ _C RI) .  

12) Vy3xR1(x, y), and for every x R~ is a transitive set. 

13) ~o C_ R ~ where 0 = O is the first element in o). 

Let L2 = LI U {P0, c ~ c 1, R2, R3} where Po, R2, R3 are 1-place, 2-place, 2-place 

relations, respectively, and c o and c 1 are individual constants. 

For every M ~ 4'1 we define a model N = N2(M) in the language L2 : P~' = M, 
i i [N[-[M[={c '~[ i  =O, l and x ~ o)'4}, (c') N= co ,  i = 0 , 1 ,  R~={(c '~ ,cx+l ) I i  = 

0 , 1 a n d x E o )  M} and R ~ = { ( x , c ~ )  I x E w  M and i = 0 , 1 } .  

CLAIM 2. There exists a sentence 4'2 in the language L2 such that: 

a) For every M ~ 4'~, N2(M)~ 4'2. 
f 

b) If M ~ 4'2 then P~' ~ 4'1 and there is an f such that N ~  N2(P~ and 

f r P f  = Id. 

c) If M ~ 4'1 then o) ~ is not standard iff there is an f E Aut (N2(M)) such that 

f r  Id and f i l M [  = Id. 

PROOF. It is easy to find a sentence 4,2 which satisfies (a) and (b). We prove 

(c). Let N ~ 4'v By (b) we can assume that N = N2(M) for some M such that 

M1=4'~. Suppose o) " is not standard, then: (oJ~, E ) ~ o ~  +Zcr. Let 

f : [ N [---> I N [ be defined as follows: f r[ M [ = Id, if a E [ N[  - I M 1 and a is the 

n-th successor of (cJ) N, i = 0, 1 (that is, there are (c~) N = al ,-  �9 ", a,  = a such that 

(a,, a~+l)E R3 ~) then f ( a ) =  a;  otherwise there exist b,c such that b ~  a and 

(c, a), (c, b ) E  R~, we define f (a )=  b. It is easy to check that f is a non-trivial 

automorphism of N and f [I M[  = Id. 

DEFINITION 3. Let M ~ 4'1. We say that M is countably closed if for every 

x ~ o) ~ and for every a C_ (R~) ~ such that In[= No, there exists a ' ~  M such 

that for every x, x E Ma' iff x E a. 

In the sequel we shall define a language L3 _D L2 U {P1}, a sentence 4'3 in L3 and 

a function M ~ N3(M) such that for every M ~ 4'1, N3(M) is a model in L3 and 

the following claim is satisfied: 

CLAIM 4. N3(M), 4'3, L3 satisfy the following: 

a) If M ~ $1 then N3(M) ~ 4'3 and if N ~ 4'3 then Po ~ ~ 4'1. 

b) If M ~ 4'1 then p~,~m I L1 = M;  if N ~ 4'3 then there exists an f such that 
[ 

N~(P~ ~- P~I I L2 and f r P g  = Id. 

c) Let N ~ 4'~ and M = Po ~ then there exists an Id # f ~ Aut (N) such that 

f I (I N I -  ( P ~ -  P ~ )  = Id iff ~o ~ is not standard. 

d) Let N ~ 4'3 then: 
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i) If Po N is not countably closed then there is an Id # f ~ Aut (N) such that 

f r P~' = Id. 
ii) If Po~is countably closed (and therefore well-founded) then N is rigid. 

e) If N~=~3 then IPgf =IINI[. 

PROOF. We first define the following abbreviations for every n, k E to 

(G '~k, + ) = (S,( ~ (R 7)), symmetric difference), 

that is, x ~ G '~k is the abbreviation of the formula of L2 which says that n, k E to, 

x is a finite set of functions from k to R 7 and x + y = z means that x, y, z E G '~k 

and (x - y) t3 (y - x) = z. 

For notational simplicity let distinct groups G'~k have distinct zeros. Note that 

in those groups every element has order two, hence addition and subtraction are 

the same. For every n, k E to there is a unique homomorphism Pr: G'~k+l---~ G '~k 

such that for every x E E§ ';) Pr({x}) = {x r k}. Pr(x) = y can be defined in L2. 

Let L3 = L2 t.I {P1, P2, G*, O, Pr*, P3, R4} where P~, P2, G*, O, P3, R,  are 1- 

place, 2-place, 3-place, 3-place, 3-place and 5-place predicates, respectively, and 

Pr* is a unary function symbol. We shall use the following notations: P~ = 

{xlPz(n ,x)} ,  e[ '~={xtP3(n ,  rhX)}, G * " k = { x l G * ( n , k , x ) } ,  R'2",,~,k= 

{y [ R,(n, 7/, x, k, y)}. Let us define N3(M) for M's  which satisfy ~ ;  we denote 

N = N 3 ( M ) .  Let P ~ = N 2 ( M ) ,  for every n , k ~ t o M { C , . n I x E ( G ' k ) M }  = 

(G*'~k) N, that is, the elements of (G*'~k) N are copies of the elements of (G'~k) M 

and for ( n , k ) # ( n l ,  k~) (G*'~k)NA(G*~"koN=O; if ( x , y ) ~ ( t o ~ )  2 then 
(G*"Y) N = ~ .  For every n E toM, (p~)N = 1,3k~o/,,(G.,,.k)~. For every n ~ tom 

and rt ~ (" (R ~'))M 

(P;~)" = {c~.~,~ I,~ ~ (~ ~})M} 

(('>{0,1}) M) is the set of those elements of M which are sequences 

0, 1 of length to which are eventually zero). Let IN[ = P~'LI 1,3 ~e,,~(P~) ~ LI I,.J 

{(P;~')" [ n, r~ e IMI}; 

I I n E to M and there is k such that 1 

Q N =  (c ..... c ..... Y) Xl, X2~(G'~k) M a n d x l + x 2 = y  J 

Pr*N(C~.n) = Ce,oo.,, and if y is not of the form cx.n then Pr*~(y)= O M. Before 
defining R4 let us define the formulas x E G '~k'" 0 , x E G7 "k'' in the language of M. 

If ~1 E "~(R~') and k -< l(rl) (the length of ~7), O~ k'" is the subgroup of G '~k 

generated by {{t}l t E k (R?)}-  {{7/r k}} and G7 "k'" = G~'k'~ + {r/[ k}. 
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R T = { ( n ,  rl, c...,.,k,c~,.)ln, k E to~,T/E (~'(RT))U, tr E (~ u and 

(G,,<k~) I- 

So if (R~'~"~k)~'/~ then it is either the copy of G~ "~'~ or the copy of G? ~'~. 

Let ~b3 be the sentence in L3 which says: 

1) ~b;, where t0; is the sentence which tells all the information on the domains 

of all the predicates in L3; for instance 0 ;  says: 

VyVx(P2(y ,x  )---> y E to ^ (-'T P~(x )), 

PTI = I,.Jk~,,G*'~k, V x V y ( x  E y---> Po(x ) ^ eo(y )), 

Vm, n2, k,, k2((nl, kl) / (n2, k:)---> G ,.,.k, fq G * " ~  = ~ )  

Vx, y, z (Q(x ,  y, z ) ~  there are n, k ~ to such that z E G '~k and x, y E G*'~k), 

etc. 

2) ~,f, 
Intuitively Q ( x , y , z )  will say that x ,y  are copies of x ' , y '  such that 

x', y', z E G '~k a n d x ' + y ' = z .  

3) (i) For every x, y E G *'~ there is a unique z such that O(x, y, z);  

(ii) For  every y E G *'~k and z ~ G '~k there is a unique x such that Q(x, y, z); 

for a fixed y (or x) we get a one-to-one correspondence between G *~'k and O '~k ; 

(iii) Vx, y, z (Q(x ,  y, z ) - +  x -- y =- z = 0); 

(iv) Vx, y, z (Q(x ,  y, z)--+ Q(Pr*(x),  Pr*(y), Pr(z));  

(V) VX,, yl, X2, y2, Z (Q (x,, yl, z ) ^ Q (x2, y2, z )--* =1 u (Q (x,, x2, u)  A O (y,, y2, u)) 

(that is, x~ + y~ = x2 + y2 ~ x~ + xz = y~ + y2); 

(vi) Vx, y, z, u, v(( Q(x, y, u) ^ O(y, z, v ))---* Q(x,  z, u + v )) (that is, (x + y) + 

(y+z)=x+z). 
Let xE'~ky be the formula which says that n, k E r x, y E G *'~k, r I E " ' ( R  ~'), 

t ( r / ) _  >- k and if Q(x, y, z )  then z E G~ "~''. From 3) (vi) it follows that E~  k is an 

equivalence relation on G *~k, with exactly two equivalence classes. 

4) (i) Vn E o) ) (Vr lE ' (R] ' ) ) (Vx E P; '")(Vk E o))(R~ *''k is an equivalence 

class of E~'k). 

(ii) (Vn E o~) (Vr /~  " (R ? )) (Vx, y ~ P~")[(Vk ~ ~o)R2 " ~ =  R2""k----~x = y)]. 

Let 

~(n, ~/,x, y, o') =- (n E (O)A (~/ ~ ~'(R~')) A (X,y ~ ep")  ^ o" ~ ' { 0 , 1 / ^  (Vk ~ o~) 

(R2 ' ' '~ = R2  ' ' '~ -= at(k) = 0). 

(iii) 0 in  U o)) (V'0 ~ "(R'l))OCx, y E Pp')::lo'~o(n, ~l,x, y, o'). 

(iv) (Vn ~ to)0r ~ " (R  7)(Vx ~ P;~")Wa E ">{0, 1}):lye0 (n, ~7, x, y, (r). 



282 s. SHELAH Israel J. Math. 

It is easy to see that r and N3(M) satisfy (a), (b) and (e) of Claim 4. 

c) Let N ~  ~b3, M l =  e~,Mo = PP. By (2) MiCrOs, by (a) and (1) M~ is 

isomorphic over Mo to N:(Mo). So if oJ m is standard then by Claim 2 there is no 

non-trivial automorphism of M~, which is the identity on Mo; since I M,[ is 

definable in N, there is no non-trivial automorphism of N such that f t( lNl- 
( IM, I -  I Mol)) = Id. 

If ~o M~ is not standard then there is an f E Aut(M~) such that f fMo = Id; by 

the axioms in (1) and since f [ Mo = Id, f U Id r (I N I - ] M~ [) is an automorphism 

of N. 
d) Let N 1 = ~ ,  Mo, M1, Ms are the submodels of N whose universes are Po N, 

P~, P~' U U {(P~)~ I n E oJ N} respectively. We first show that if f: I Ms I w_ I M2 [ 
satisfies f [I M1 1 = Id then f E Aut(M2) iff for every n E ~o~: for every k E ~o N 

there is an ak E G '~k'~ such that for every b E G *~'k'~ (f(b),b,a~)E QN, and 

PrN(ak+,) = at. 
Let b, c E(G*"~k) N, then (b ,c ,d)E QN ~ ( f (b) , f (c ) ,d)E QN ~ by (3) (v) 

there is an a such that (f(b), b, a), (f(c), c, a )E  ON; by (3) (i) a = a,~k does not 

depend on b or c. As (f(b), b, a,.k)E ON, (pr.N(f(b)),  pr.N(b),  pr~(a,~k)) E QN 

and since f ~ Aut(M2) Pr*N(/(b)) = f(Pr*~'(b)) so c = Pr*~(f (b) )E  (G* '~- t )  ~', 
and (f(c), c, PrN(a,,~)) ~ ON so Pr~'(a,~) = a,~_~. 

d) (i) Suppose Mo = Po ~ is not countably closed; if also ~o N is not standard 

then by (c) there is I d d f E A u t ( N )  such that f [ I M o l = I d .  Suppose ~a N is 

standard and let a C ( R T )  N lal--No and a ~ N  (that is, for no a ' ~ l N I  
Vx(x E Na' -- x E a)). Let r/o be a function from oJ onto a, then by axiom 7 of ~b~ 

no ~ N. Let f be defined as follows: f [ (1N I -  (P~)S - {P~'~'s[ r / E  IN  I}) = Id, if 
x ~ G *~  then f (x)  is the unique y which satisfies iY, x, {770 [k} )E  Q~ (notice 
that ~ assures that N is closed under finite sequences); let 71 ~ ( ' (R~ ' ) )  s, 

k ~ o~ ~, rl [k = n0[k, and 7/I(k + 1)~  r/o~(k + 1). Let 1(o')= k, o" = i l , ' "  ", 1) 
for every x ~ ( P ~ ' ) n  we define f (x)  to be the unique y which satisfies 

N I = ,p(n, rt, x, y, ~r) (see axiom (4) (iii)). We identify o- with ,x^i0, 0 , . - .  }. 

By the first claim in the proof of (d) f tl M~I E Aut (Ms). By the definition of f 

in, r/, x) ~ P~ iff if(n),f(~7),f(x)) = in, rl, f(x)) E P~. Suppose (n, r/, x, k, y) E 

R~, let koEO~ ~' such that r / tko=770[ko and 7 7 t k o + l ~ 7 / o [ k o + l .  If k > k o  

then by the definition of f (R~ ' ' * )  ~ = (R~"~'l(x)'k) N, since if(Y), Y, {770 [ k } ) ~  O n  

and {no r k} ~ (G~'~") ~, E '~ = f (y )  , y; thus by 4 (i) f ( y ) C ( R r " ' ~ )  ~ R,  so 

in, rl, f(x), k , f ( y ) )~  R~4. If k -< ko then (R:'~'"~)n# (R~'"~t'"~) ~ and ~ f ( y ) E ~ y  
so again in, rl, f(x), k , f ( y ) ) ~  R4 ~, since by axioms (3) (iii) and (3) ( v i ) f s =  Id it 

follows that (f(n), f(~7 ), f(x), f(k),  f (y))  ~ R ,~ r in, 71, x, k, y ) E R ~. 
d) (ii) Let N ~ r and Aut (N) # Id. Suppose Mo is well founded; we show 
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that Mo is not countably closed, let Id # f ~ Aut (N), since Mo is well founded 

frM~ = Id. It is clear that for some n ~ wufI (P '~)u# Id. Let {a~ I k ~ o)"} be as 

in the first claim in the proof of (d). Since f #  Id for some ko ~ to u, for every 

k => ko a~# ~ .  From the definition of Pr there is a sequence {z~ I ko_- < k ~ to u} 

such that Zk~uak and for every k ~ to ~ z~ = z~+l I k. Let r / =  {zk I k ~ r 
Suppose by way of contradiction 7 /~  I N [. Then for every ko =< k ~ to N and 

x ~ ( G * ' ~ )  ~' not xE'~"f(x). Let y ~ P~" then for some ko< k (R2""~) u = 

(R"~"tr so (n, ~, y, k, x) ~ R~ r (n, rt, f (y) ,  k, f (x))  ~ R ,  ~, a contradiction, 

so ~7 ~ [ N ] and thus N is not countably closed. So Claim 4 is proven. 

Let X 2 = 3 R ~ . . . 3 R ~ 1 V S l . . . V S k x 3  be a second-order sentence and X3 a 

first-order sentence, then X2 is logically equivalent to a sentence 

X - 3 R  ~. . .  3 R  1,_7 3 S ~ . . .  3S~Vx l . . .  Vx,,,,xI(R ~. . .  R ~,, S~ . . .  S ~, x l , "  ", x,,,,) 

where $11 . . .  S~ are relations or function symbols and Xl is quantifier free. Let 

,1(4 ~- - - ' - - '1~ lSl l  " "  " S ~ V x 1  ~ "VXm.~l"~ we denote /~ = (R~ . . .R~ , )  and S =  (S~- . .S~) .  

W.l.o.g. for every j S] is a ki-place function symbol. 

We shall define L,_D L3 O {R 11,'" ", R ~}, a sentence ~b, in L,  and for every 

model M in the language L* = L1 U {R~,- . . ,  R~,,} which satisfies ~bl, a model 

N, (M)  such that the following claim holds: 

CLAIM 5. i) If M ~ 1~1 and L (M) = L* then N4(M) I = ~, and if N ~ ~b, then 

Po ~ ~ ~1. 

ii) If N ~ 64 then II N II = l eo  I 
iii) If N ~ ~b4, M = P~', M is countably closed and M ~ 01 A X4 then N is rigid. 

iv) If N ~  r and N is rigid then Po ~ ~ ~blA )(4 and Po N is countably closed. 

PROOF. Certain details in the proof of Claim 5 are similar to what was done 

in Claim 4; we omit these details. 

We first define certain formulas in L I'. There is a formula ~0 (n, a, g) in L* such 

that for every model M of ~ in the language L I', for every n, a ~ ] M I and 

~=-(s,,...,s,)~[MI, M~cp[n ,a ,  ff] iff the following holds in M : n E o J  '~, 
a C_ R ~', a is countable (in M), s~ is a function, Dora(s,) C_ a k,, Rng(s~) C_ R ~', 

i = l , . - . , l  and for every x ~ , . . . , x , ~ , E a  if the truth value of 

x~(R 1," ", R ~,, s l , . . . ,  st, x l , "  ", x,,.,) is defined then it is " t ruth" .  

Let k be a (true) natural number. We say that (s, s') is an n-approximation on 

a k ( a  ~ = a •  of length k) if a_C_RT, s and s' are functions, 

Dom(s)  fq Dom(s ' )  = ~l, Dora(s) U Dom(s ' )  = a k, Rng(s) C R ~', Rng(s')  C 
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{m : n < m C_ ~}; we say that (s, s') is the n-approximation induced on a k by [ if 

(s,s ')  is an n-approximation on ak, s f t ( a ~ N  -~ = f (R1)) and s ' (~ )=  m iff 

f ( ~ ) E  R ? -  R 7  -~. 
We now define G?" :  G ? " =  So({((sl, s~) , . - . , (s , ,s])) l~o(n,a,(s , , . .  ",sl)) and 

(s~, s;) is an n-approximation on a k,, i =  1 , . - ' , / } ) ;  + denotes the symmetric 

difference in G~". We define now the function Prl. Let b C a, m =< n, (sl, s[) is an 

n-approximation on a k. Let s* = st r(b k O s?l((RT) k) and s~*= s~Ib k Us",  

where s " (2 )=  r iff s  k r IDom(sl )  and s I ( s  -1 and r > m  and 

(sl ,  sO* = (s,,s~). 

Prl(a, n, b, re, x)  = 

. ,s ,  ), . , ( s , * , . .  g;*)} ( (g , , ,  , . -1, - ,  *, �9 

0 otherwise. 

i f : x ~ G ~ ' " m < = n ,  b C a ,  and let 

x = ((~I, �9 �9 ~), �9 �9 (~, �9 �9 ~;>} 

Certainly there are formulas in L* which define in every model of Sz in L* the 

relations x E G?"  and y = Prl(a,n ,b ,m,x) .  

Let L,  = L3 U {R ~1, "' ., R~,I} U {P,, G~*, Pr~, O1} where P,, G~, Q~ are 1-place, 

3-place, and 3-place predicates, respectively, and PrT is a 5-place function 

symbol. 

Let M be a model of I~1 in the language L*.  We define N = N4(M) : I N[ = 

I N 3 ( M )  I U {c,~.,It ~ (G~DM}, P 7  = N3(M), ( G  ~*)" = {(a, n, c,~,~,)lt E (G'~")M}, 

O1" = {(c,~,~,, c,~ .... t~ - t2) l tl, t2 ~ (G~'")M}, the relations and functions of N3(M), 

and 

Pr*~(a ,n ,b ,m,x )  = 

Cb.,,.d if x = c ~ , ~ , a n d i n M  m<--n, b C a ,  tEG'~" ,  Gbt'~'#O, 

d = Pr~(a, n, b, m, t) 

O otherwise. 

$4 is defined in a similar way to the definition of $3. 

The proof of (i), (ii) in Claim 5 is trivial. To  prove (iv) suppose N ~ $4 is rigid 

and denote M = P0 N. Certainly M is countably closed. Suppose by way of 

contradiction MInx4;  then there are functions s , . . . , s t  on I M1 such that 

(M, s l , "  ", s~) ~ V x l . . .  VXralXl(R, S, X l , ' '  ", Xm,)- For every a, n E I M I  such that 

(G~'")~# 0 ,  let t~, = {(g~,.. ", g'~)} where g* is the n-approximation induced on 

a by s, We d e f i n e / : I N I ~ I N I :  
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x {//x I (M)I 
f ( x )  = Y if  x f f  M and y is the unique e l emen t  such that  for  some  

a, n E I M [ , ( y , x , t ~ , ~ ) E  Q ~  

as in Cla im 4 it is easy to see that  f is a nontr ivial  a u t o m o r p h i s m  of N, a 

contradict ion.  

iii) Suppose  by way of contradic t ion N is not  rigid, let M = Po ~ and 

]d ~ [ E A u t ( N ) :  Since M is well founded  f I I M I = Id;  since M is coun tab ly  

closed and P 7  ~ 0~ (this can be assured by 0,)  by (a) (ii) of  Cla im 4 [ r ,~ = Id. 

As in the ana logous  par t  in the proof  of  Cla im 4 for  every  a, n E I M[ such that  

( G ~ ' " ) M ~ O  there  is a unique t~,. E (G~'") ~' such that  for  every  x E ( G * ' ~ ' )  N 

' n' t~,., ~ 0 .  So it is ([(x) ,  x, ta,.) E QT, Prl~(a, n, b, m, t~,.) = tb, m and for  some  a , 

easy to define for  every  n'  <- n ~ to M a. such that  

1) (G"- ' " )M~ 0 .  

2) If m > n ,  a ' C a . C _ a . .  

3) If a C b and  ( G b ' " ) ~ / O  then I tb.. [ = It-.,-[.  No te  that  if Pr~(a ,  n, b, n, h) = 

t2 then I t=l----I t,I. It  is possible to choose  a sequence  {s"l n ' -  -< n ~ to} such that  

s" E to... and  rn < n =), Pr~(a . ,  n, a.~, m, {s"}) = s ~". F o r  every  b and  n = n '  such 

that ( G b ' " ) ~ O  and b 3 _ a .  there  is a unique Sb'"Etb,. such that  

Pr~(b, n, a., n, s b'") = s". We  show that  if b C c, m -< k (G~ 'k )u J  O / ( G ~ " )  M then 

Pr~(c, k, b, m, s "k) = s b'". Let  g = Pr~(c, k, b, m, s `'k) then 

Prl~(b, m, a,., m, g) = Pr~(b, m, a.,, m, Prl~(C, k, b, m, s"E)) 

= Pra(ak, k, am, m, Prl(c, k, ak, k, s"k)) = Prl(ak, k, am, m, s k) = sm. 

This follows for  the ax ioms of 0~. 

So P r , ( b , m , a . , n , g ) =  s m = P r ~ ( b , m , a . . m ,  sb- '~)since Itb,. I=  It  . . . .  [ , g =  s b,'. 

It thus follows that  there  are funct ions s~, �9 �9 �9 s~ on I M / such that  for  every  n, b, if 

a ,  C b and ( G ~ ' " ) ~  ~ and s b'" = ((s~', s '~*) , . . .  (s*, s~*)), then (s*, s',*) is the 

n - app rox ima t ion  induced by s~ on b. By the definit ion of G~ 

(M, s~,. �9 s~)~VXl,-  �9 �9 xmlx~(R, S, x , . .  �9 x,,,), a contradic t ion to the fact that  

M ~ x4.So M is rigid and Cla im 5 is proved.  

PROOF OF THEOREM 1. W e  p rove  that  04 has a rigid mode l  of  cardinal i ty ,~ iff 

E~<~K "~  h and h ~ X. 

Suppose  0 ,  has a rigid model  N of cardinal i ty h. Then  [Po ~ [ = [] N [[ = A and 

Po N is countably  closed, so E . < , K ' 0 =  h. By Cla im 5, Po  ~ ~ g 4  so ,~ I = X- 

Suppose  ,~ ~ X and E,<~x "o= ,t, and  let r~, . . .r ,~ be  re la t ions  of  A such that  

(h;  r t , . . ,  r, ,)~X~. Since h = E . < ~ ' o  there  is a wel l - founded countab ly  closed 
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model of $~ M whose universe is A; then N4(M) is a rigid model of $, of 

cardinality A. 

Q.E.D. 
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